ESA-ECMWF WORKSHOP 

7 - 10 May 2024| ESA-ESRIN 



2nd EDITION

Please find here all the information on the 2nd edition.

Agenda


Monday, 15 November
10:30-10:45Welcome and introduction ESA
Pierre-Philippe Mathieu (ESA)
10:45-11:00Welcome and introduction ECMWF
Andy Brown (ECMWF)

Keynote: ML for the ESOP - Setting the scene
Chair: Rochelle Schneider (ESA)
11:00-11:45
Machine learning on the Earth System with remote sensing: towards machines that we can understand and interact with
Keynote Speaker: Devis Tuia (EPFL)
11:45-12:30
Combining data assimilation and machine learning to extract more information from earth observations
Keynote Speaker: Alan Geer (ECMWF)

12:30-14:00
Poster session 

Session 1.1: Enhancing Satellite Observation with ML
Chair: Bertrand Le Saux (ESA)
14:00-14:30
Benefits and opportunities of Explainable Machine Learning in the environmental sciences
Ribana Roscher (Technical University of Munich and University of Bonn)
14:30-15:00
Atmospheric Retrievals in a Machine Learning Context: A Radiometric Story Over the Ocean
Mario Echeverri Bautista (KNMI)
15:00-15:30
Permutation invariance and uncertainty in multitemporal image super-resolution
Diego Valsesia (Politecnico Di Torino)
15:30-16:00Coffee Break

Session 1.2: Enhancing Satellite Observation with ML
Chair: Rochelle Schneider (ESA)
16:00-16:30CNN-based Detection of Tiny Objects in Remote Areas UsingSpatiotemporal Earth Observation Data
Roman Pflugfelder (TU Wien)
16:30-17:00Estimate of XCO2 from OCO-2 Observations Using a Neural Network Approach
Francois-Marie Breon (CEA/LSCE)
17:00-17:30Autonomous Robotic Teams, Machine Learning, and the Next Generation of Earth Observing System
David J Lary (Hanson Center for Space Sciences, University of Texas at Dallas)

Tuesday, 16 November

Session 1.3: Enhancing Satellite Observation with ML
Chair: Begüm Demir (TU Berlin)
09:00-09:30Free High Resolution Imagery -  Open-Source Models and Package for Sentinel 2 Super-Resolution
Julien Cornebise (UCL)
09:30-10:00Deep Learning Implementations to Facilitate the Assimilation of Satellite Observations. A Case Study for LST and SST Using IASI Observations
Eulalie Boucher (Lerma - Observatoire De Paris)
10:00-10:30Machine Learning Techniques for Automated ULF Wave Recognition in Swarm Time Series
Georgios Balasis (National Observatory of Athens)
10:30-11:00Coffee Break

Session 2.1: Hybrid Data Assimilation - ML Approaches
Chair: Alan Geer (ECMWF)
11:00-11:30
Data Assimilation + Machine Learning = Data Learning
Rossella Arcucci (Imperial College London)
11:30-12:00
Use of AI to facilitate the NWP assimilation of EOs: retrieval, radiative transfer and physical integration of satellite products
Filipe Aires (CNRS)
12:00-12:30
Gaussian Assimilation of non-Gaussian Image Data via Pre-Processing by Variational Auto-Encoder (VAE)
Daisuke Hotta (Japan Meteorological Agency)
12:30-13:00Correcting model error with an online Artificial Neural Network
Marcin Chrust (ECMWF)
13:00-14:00Lunch break

Session 2.2: Hybrid Data Assimilation - ML Approaches
Chair: Rossella Arcucci (Imperial College London)
14:00-14:30Model error correction with data assimilation and machine learning
Alban Farchi (CEREA - ENPC)
14:30-15:00Towards the Direct Assimilation of Scatterometer Backscatter Triplet
Sean Healy (ECMWF)
15:00-15:30Data-Driven Surrogate Model with Latent Data assimilation for Wildfire Forecasting
Sibo Cheng (Imperial College London)
15:30-16:00Coffee break

Session 3.1: Geophysical Forecasting with ML and Hybrid Models
Chair: Anca Anghelea (ESA)
16:00-16:30Neural-Network Parameterization of Subgrid Momentum Transport Learned from a High-Resolution Simulation
Janni Yuval (MIT)
16:30-17:00Machine learning based climate modelling and analysis
 Veronika Eyring (DLR and University of Bremen)
17:00-17:30Atmospheric Physics-Guided Machine Learning: Towards Physically-Consistent, Data-Driven, and Interpretable Models of Convection
Tom Beucler (University of Lausanne)

Wednesday, 17 November

Session 3.2: Geophysical Forecasting with ML and Hybrid Models
Chair: Marc Bocquet (ENPC)
09.00-10.30Learning parameters of a numerical model from observations
Tijana Janjic (Ludwig-Maximilians-Universität München)
09.30-10.00Machine Learning for Seamless Thunderstorm Nowcasting from Multiple Data Sources
Jussi Leinonen (MeteoSwiss)
10.00-10.30Smartriver: Artificial Intelligence for Effective Water Resources Forecast and Management
Stefano Bagli (Gecosistema)

Session 4.1: ML for Post-Processing and Dissemination 
Chair:  Gustau Camps Vals (IPL - Universitat de València)
11:00-11:30Post-processing of precipitation with Bernstein quantile distribution networks
John Bjørnar Bremnes (Norwegian Meteorological Institute)
11:30-12:00Machine Learning-Based Post-Process Correction of the High-Resolution Multi-Wavelength Sentinel-3 Synergy Aerosol Product
Antti Lipponen (Finnish Meteorological Institute)
12:00-12:30Integrating Reanalysis and Satellite Cloud Information to Estimate Downward Long-wave Radiation Fluxes Using Multivariate Adaptive Regression Splines: Application to EUMETSAT LSA-SAF
Francisco Lopes (Instituto Dom Luis)
12:30-13:00A spatiotemporal ensemble machine learning framework for predictive mapping: One model to rule them all?
Tom Hengl (OpenGeoHub foundation)
13:00-14:00Lunch Break

Session 4.2: ML for Post-Processing and Dissemination
Chair: Claudia Vitolo (ESA)
14:00-14:30Using Convolutional Neural Networks to Detect Emissions Plumes From TROPOMI Data
Douglas Finch (University Of Edinburgh)
14:30-15:00Downscaling air pollution levels by fusing Geospatial Vector Data and Sentinel 5P observations over Europe
Marvin Mc Cutchan (Iarai and Tu Wien)
15:00-15:30The Self-Attentive Ensemble Transformer: Representing Ensemble Interactions in Neural Networks
Tobias Finn (Universität Hamburg)
15:30-16:00Coffee break

Session 4.3: ML for Post-Processing and Dissemination
Chair: Peter Dueben (ECMWF)
16:00-16:30How Earth Observations and Machine Learning are Supporting Agricultural Monitoring and Food Security Globally
Catherine Nakalembe  (University of Maryland and NASA Harvest)
16:30-17:00Flood Segmentation on Sentinel-1 SAR Imagery with Semi-Supervised Learning
Siddha Ganju, (Nvidia, SpaceML, and FDL)
17:00-17:30Description of Working Group
Massimo Bonavita (ECMWF)

Thursday, 18 November

Working Groups - Thematic areas 
9:00-10:30WG1 - Enhancing Satellite Observation with ML
Chairs: Begüm Demir and Bertrand Le Saux  
9:00-10:30
WG2 - Hybrid Data Assimilation - ML Approaches
Chairs: Rossella Arcucci and Alan Geer  
9:00-10:30
WG3 - Geophysical Forecasting with ML and Hybrid Models
Chairs: Claudia Vitolo and Peter Dueben  
9:00-10:30
WG4 - ML for Post-Processing and Dissemination
Chairs: Rochelle Schneider and Massimo Bonavita
10:30-11:00Coffee Break
11:00-12:00WG1 - Enhancing Satellite Observation with ML
Chairs: Begüm Demir and Bertrand Le Saux 
11:00-12:00
WG2 - Hybrid Data Assimilation - ML Approaches
Chairs: Rossella Arcucci and Alan Geer
11:00-12:00
WG3 - Geophysical Forecasting with ML and Hybrid Models
Chairs: Claudia Vitolo and Peter Dueben  
11:00-12:00
WG4 - ML for Post-Processing and Dissemination
Chairs: Rochelle Schneider and Massimo Bonavita
12:00-13:00WG chairs finalise reports
13:00-14:00Lunch break

Session 5: Working Groups plenary discussion and close
14:00-15:30Working Groups - plenary discussion and close
Chair: Massimo Bonavita (ECMWF)


Posters

IDPoster Title
1Incorporating Spatial Information Into Ensemble Post-processing via Autoencoder Neural Networks
Sebastian Lerch (Karlsruhe Institute Of Technology), Kai Polsterer (Heidelberg Institute for Theoretical Studies)
2Self-supervised methods for joint SAR and multispectral land cover mapping
Antonio Montanaro (Politecnico Di Torino),Diego Valsesia (Politecnico di Torino), Giulia Fracastoro (Politecnico di Torino),  Enrico Magli (Politecnico di Torino)
3Machine Learning Methods for Postprocessing Ensemble Forecasts of Wind Gusts: A Systematic Comparison
Benedikt Schulz (Karlsruhe Institute of Technology), Sebastian Lerch (Karlsruhe Institute of Technology)
4Comparing the significance of new data products from satellites containing night-time light and day-time aerosol information for air quality Prediction.
Ankit Didwania (Gujarat Technological University), Vibha Patel (Gujarat Technological University)  
5Improvement of Ku-band Winds in Rainy Regions Obtained by a Support Vector Machine Method
Xingou Xu (National Space Science Center, Chinese Academy of Sciences), Ad Stoffelen (Royal Netherlands Meteorological Institute)
6S2S-Forecasting of Central European Winter Temperature Based on Quantile Random Forests
Selina Kiefer Karlsruhe (Institute For Technology)
7Automated Polynya Identification Tool (APIT) 
James Hickson (ARGANS),  Estrella Olmedo (Barcelona Expert Centre), Verónica Gonzalez (Barcelona Expert Centre), Diego Fernández (ESA)
8Feasibility Study of Real Time Oil Spill Tracking, Exploiting Dedicated AI On-Board Satellite
Gianluca Giuffrida (University Of Pisa), Lorenzo Diana (University of Pisa), Pietro Nannipieri (University of Pisa), Luca Fanucci (University Of Pisa)
9Multivariate Ensemble Post-Processing Using Generative Machine Learning Methods
Jieyu Chen (Karlsruhe Institute Of Technology), Sebastian Lerch (Karlsruhe Institute Of Technology)
10Prediction of Ocean Driven Antarctic Ice Shelf Melting Using Machine Learning
Sebastian Rosier (Northumbria University), Christopher Bull (Northumbria University)
11Estimating Industrial Greenhouse Gas Emissions from Satellite Imagery
Joëlle Hanna (University of St Gallen), Michael Mommert (University of St Gallen), Damian Borth (University of St Gallen)
12Post-Processing of NWP Model Output by Machine Learning Algorithms for Severe Weather Forecasting
Antonio Vocino (COMET - Italian Air Force Meteorological Centre), Francesca Marcucci (COMET - Italian Air Force Meteorological Centre),  Raffaele Golino (Geo-K),  Fabio Del Frate (Tor Vergata University)
13AiTLAS: Artificial Intelligence Toolbox for Earth Observation
Dragi Kocev (Jozef Stefan Institute), Ivica Dimitrovski (Bias Variance Labs, Jozef Stefan Institute), Ivan Kitanovski (Bias Variance Labs, Jozef Stefan Institute), Panče Panov (Jozef Stefan Institute, Bias Variance Labs),  Nikola Simidjievski (Bias Variance Labs, University of Cambridge)
14Combining Airborne LiDAR and Sentinel-2 Data for the Classification of Amazonian Secondary Forests and Calculation of Carbon Stocks in different Successional Stages
Leonard Pfaff (Karlsruher Institut Für Technologie), Yhasmin Mendes de Moura (Karlsruher Institut Für Technologie), Fabian Faßnacht (Karlsruher Institut Für Technologie), Camila Silva (IPAM), Ricardo Dalagnol (INPE), Lenio Galvao (INPE)
15Deep Learning in Space: The Big Data Problems or Big Problems with Data?
Jakub Nalepa (KP Labs)
16Deep Learning weather uncertainty quantification for EO satellite mission planning
Jonathan Guerra (Airbus Defence & Space),  Mathieu Picard (Airbus Defence & Space)
17Digital Mapping of Soil Organic Matter Using Open Source Accessible Products of ESA® in Arable Plain
Fuat Kaya Isparta (Isparta University Of Applied Sciences Faculty Of Agriculture Department Of Soil Science And Plant Nutrition), Levent BAŞAYİĞİT (Isparta University Of Applied Sciences Faculty Of Agriculture Department Of Soil Science And Plant Nutrition)
18
Enhancing the Maritime Monitoring by Deep Learning
Maria Daniela Graziano (University of Naples Federico II),  Roberto Del Prete (University of Naples Federico II), Alfredo Renga (University of Naples Federico II),
19Satellite Tracking & Monitoring using Orbitshub ACCAT Systems
Divya Krishnamoorthy (Orbitshub)
20AI Ecosystem for Energy Meteorology, Optimization of Renewable Energy Applications and Power Forecasts 
Anton Kaifel (ZSW), Martin Felder (ZSW), Frank Sehnke (ZSW), Linda Menger (ZSW),  Kay Ohnmeiß (ZSW)
21High-resolution soil moisture retrieval from remote sensing microwave observations
Grigorios Tsagkatakis (Forth), Mahta Moghaddam (University of Southern California), Panagiotis Tsakalides (Forth)
22FloodSENS: Flood Segmentation in Partially Clouded Optical Satellite Images
Ben Gaffinet (RSS-Hydro), Ron Hagensieker (osir.io),  Laura Giustarini (RSS-Hydro), Guy Schumann (RSS-Hydro)
23Training Dataset Requirements for Cloud Masking
Carsten Brockmann (Brockmann Consult GmbH), Jan Wevers (Brockmann Consult GmbH)
24Daily to Sub-daily precipitation downscaling based on multiple datasets using artificial neural networks in Brazil
Rogerio Batista (Inpe), Alan Calheiros (Inpe)
25Intelligent Dashboard of the Celestial Meteor CAMS Data
Julia Nguyen (SpaceML), Chicheng Ren
26Assessment of Methane Mitigation Potential of Large Oil and Gas Leaks
Clément Giron (Kayrros), Thomas Lauvaux (University de Saclay), Alexandre D'Aspremont (Kayrros, CNRS),  Riley Duren (University of Arizona, Carbon Mapper) Daniel Cusworth (Jet Propulsion Laboratory)
27It's a Bird, It's a Plane, It's a Meteor!
Surya Ambardar (Student), Siddha Ganju (NVIDIA), Peter Jenniskens (SETI Institute)
28Satellite Image Simulation by Neural Networks Based on RTTOV Radiative Transfer Model
Tom Cocogne (French Satellite Meteorology Research Centre)
29Humanitarian Disaster Assistance Informed by White Box Earth Observation-based Machine Learning Algorithms
Thomas Chen (Academy For Mathematics, Science, And Engineering)
30Spatio-temporal climate extremes – semi-supervised detection with a deep autoencoder
Albrecht Schall (Max Planck Institute for Biogeochemistry)



deadlines

Abstract Submissions opens: 28 June 2021

Abstract Submission closes: 15 August 2021

Registration opens:  16 August 2021

Abstract acceptance notification: Early October

Registration closes: 1 November 2021